伺服電動(dòng)缸模擬地震的試驗(yàn)研究
- 2018-11-21 10:52:00
- 陸啟蒙 原創(chuàng)
- 9167
引 言
交流伺服電動(dòng)缸的核心部件為交流伺服電機(jī),通過絲桿將電機(jī)的轉(zhuǎn)動(dòng)轉(zhuǎn)換為推桿的直線運(yùn)動(dòng) 。利用交流伺服驅(qū)動(dòng)器可以對(duì)伺服電機(jī)的轉(zhuǎn)角 、轉(zhuǎn)速和轉(zhuǎn)矩參量實(shí)現(xiàn)精確控制 。 將該技術(shù)與計(jì)算機(jī)控制技術(shù)相結(jié) 合,可 以對(duì)交流伺 服 電動(dòng)缸推 桿的 加 速度 、速度和位移實(shí)現(xiàn)高精度動(dòng)態(tài)閉環(huán)控制, 為利用交流伺服電動(dòng)缸模擬地震提供了技術(shù)基礎(chǔ) 。
1 硬件配置
本文利用一臺(tái)交流伺服電動(dòng)缸和相關(guān)設(shè)備架構(gòu)了一個(gè)小型的振動(dòng)臺(tái)系統(tǒng)作為電動(dòng)缸模擬地震試驗(yàn)研究的平臺(tái) 。
1.1 系統(tǒng)動(dòng)力
系統(tǒng)驅(qū)動(dòng)力由一交流伺服電動(dòng)缸和與之配套的驅(qū)動(dòng)器提供 。 電動(dòng)缸標(biāo)示行程 120mm;出力 17kN;速度 100mm/s。電動(dòng)缸的伺服電機(jī)為松下 MINAS A4系列,型號(hào)為 MSMA202P1H[4] ,額定功率2.0kW ,驅(qū)動(dòng)器型號(hào)為 MEDDT7364,額定功率為2.5kW 。 詳細(xì)參數(shù)見參考文獻(xiàn)。
1.2 系統(tǒng)控制
系統(tǒng)由一臺(tái)計(jì)算機(jī)配合運(yùn)動(dòng)控制卡組成上位控制單元, 通過加速度傳感器以及交流伺服電機(jī)中的編碼器反饋信號(hào)形成閉環(huán)控制回路 。
1.3 系統(tǒng)外圍
振動(dòng)臺(tái)的外圍設(shè)備包括一個(gè) 0.8m× 0.6m的鋁合金振動(dòng)臺(tái)面和與之配套的基座和軌道, 電源和驅(qū)動(dòng)器的配置箱以及計(jì)算機(jī)的外圍設(shè)備等 。
2 數(shù)控方案
振動(dòng)臺(tái)數(shù)控的目標(biāo)是實(shí)現(xiàn)加速度信號(hào)的良好模擬再現(xiàn) 。為了實(shí)現(xiàn)控制策略的自由性和多樣性從而對(duì)系統(tǒng)模擬品質(zhì)進(jìn)行優(yōu)化, 將計(jì)算機(jī) 、運(yùn)動(dòng)控制卡 、執(zhí)行和輔助單元組合成開放式的數(shù)控系統(tǒng)[5] ,采用閉環(huán)控制模式[6] ,進(jìn)一步提高模擬品質(zhì)。根據(jù)參考文獻(xiàn)[7]中的分析, 采用三參量控制模式[8] 能在較寬頻帶范圍內(nèi)實(shí)現(xiàn)較穩(wěn)定的動(dòng)態(tài)控制, 控制效果比單一參數(shù)好 。
依據(jù)三參量控制模式的原理,位移控制對(duì)應(yīng)頻率較低的情況,速度控制對(duì)應(yīng)頻率中等的情況, 加速度控制對(duì)應(yīng)頻率較高的情況, 在計(jì)算機(jī)中編程實(shí)現(xiàn)PID調(diào)節(jié)器[9] 的設(shè)計(jì),并由計(jì)算機(jī)完成閉環(huán)調(diào)節(jié)運(yùn)算。
對(duì)于不同的模擬波形,可以分別調(diào)節(jié)三參量的PID控制參數(shù), 從而達(dá)到較理想的模擬效果 。
3 正弦波模擬
正弦加速度波形為已知函數(shù),容易求得峰值加速度 a的表達(dá)式 :a= 4π 2 AB 2 /9.8
(1)式中 : A為振幅, m;B為頻率,Hz。依據(jù)式(1),以峰值加速度為基準(zhǔn)選用不同振幅和頻率的正弦波進(jìn)行模擬, 分析模擬效果并試驗(yàn)系統(tǒng)的模擬極限 。
3.1 峰值加速度
試驗(yàn)選取 0.1 g、0.2g和 0.4g三種加速度峰值正弦波,分別試驗(yàn)了 3~8Hz頻率下的模擬效果, 加速度峰值的模擬情況以相對(duì)誤差表示。
3.2 正弦波畸變
將系統(tǒng)輸出的模擬加速度波形和峰值一致的標(biāo)準(zhǔn)正弦波比較, 計(jì)算兩者的相關(guān)系數(shù)作為波形相似度的評(píng)價(jià)指標(biāo) 。相關(guān)系數(shù)越接近 1則說明模擬輸出的正弦波畸變?cè)叫?。波形的畸變情況如圖 3所示 。
3.3 系統(tǒng)模擬極限試驗(yàn)
通過正弦波模擬試驗(yàn)測(cè)試,得到該系統(tǒng)能夠模擬輸出的最大加速度為 0.45g,通過測(cè)試各種加速度等級(jí),得到系統(tǒng)能夠響應(yīng)的正弦頻率上限為 10Hz。對(duì)于相同的輸入信號(hào), 調(diào)整臺(tái)面荷載, 在伺服電動(dòng)缸的推力范圍內(nèi)對(duì)輸出波形影響很小, 當(dāng)根據(jù)輸入加速度計(jì)算的理論推力大于額定推力時(shí), 加速度折減,嚴(yán)重時(shí)直接造成電機(jī)斷電保護(hù) 。
4 地震波模擬
地震加速度波形為隨機(jī)脈沖信號(hào),根據(jù)設(shè)計(jì)的數(shù)控方案, 輸入信號(hào)還需要對(duì)應(yīng)的地震速度和位移波形,因此要對(duì)加速度波形進(jìn)行積分 。 采用普通數(shù)值積分誤差極大, 無法滿足要求, 利用頻域積分效果較理想 。 要注意的是得到的位移脈沖幅值不能超過電動(dòng)缸行程范圍 。 可以在合理范圍內(nèi)適當(dāng)提高加速度信號(hào)的最小截止頻率 (濾去信號(hào)的一些低頻成分)以減小位移幅值或加大電動(dòng)缸行程以滿足條件 。通常因?yàn)樵囼?yàn)相似比的原因?qū)⒌卣鸩ǖ臅r(shí)間壓縮,這樣位移幅值會(huì)大幅減小,一般都可滿足行程要求。 積分得到的位移初始值通常不在零點(diǎn), 為了保證系統(tǒng)初始化后載入信號(hào)時(shí)的合理穩(wěn)定, 可將位移脈沖減去初始值, 位移曲線整體相位移動(dòng)不影響加力度模擬輸出 。
本文模擬的地震波采用汶川地震什邡八角臺(tái)記錄的東西分量波形, 將加速度峰值和時(shí)間軸調(diào)整得到不同的對(duì)比波形 。 圖 4為加速度峰值 0.27g的地震波模擬效果,圖 5為峰值調(diào)整一致后對(duì)應(yīng)輸入輸出波形的自功率譜密度曲線比較 。
地震波模擬的峰值折減規(guī)律和正弦波相近, 不再贅述 。將輸入輸出的波形峰值調(diào)整一致后直接計(jì)算輸入輸出波形的相關(guān)系數(shù), 結(jié)果列于表 1中 。
5 分析與結(jié)論
(1)通過多次的參數(shù)整定試驗(yàn), 對(duì)于在三參量控制模式下的增益系數(shù)設(shè)置得到和文獻(xiàn) [7]中相同的結(jié)論:加速度和速度的控制增益系數(shù)過大會(huì)使得系統(tǒng)內(nèi)環(huán)不穩(wěn)定, 系統(tǒng)極易產(chǎn)生高頻振蕩現(xiàn)象 。
(2)利用選用的交流伺服電動(dòng)缸配合本文的數(shù)控方案, 實(shí)現(xiàn)最大加速度 0.45g的模擬輸出, 在施載和卸載的情況下該值不變, 說明制約交流伺服電動(dòng)缸最大加速度的是交流伺服電機(jī)自身的慣量極限限制,但伺服電機(jī)慣量的計(jì)算和標(biāo)示方法以及其與極限加速度的關(guān)系還需進(jìn)一步探討 。
(3)本文采用的交流伺服電動(dòng)缸響應(yīng)的最大頻率在 15Hz以下,基本能滿足普通地震波的頻率分布范圍,但是對(duì)于時(shí)間軸壓縮的波形或是頻率分布較大的白噪聲激勵(lì), 高頻成分的模擬勢(shì)必帶來困難 。
(4)從正弦波的模擬輸出可以發(fā)現(xiàn), 加速度太大或是太小都不利于系統(tǒng)高頻的實(shí)現(xiàn) 。 并不是加速度越小的波形越容易輸出實(shí)現(xiàn) 。 在低頻情況下, 小加速度波形的模擬輸出誤差很小,隨著頻率的升高,峰值誤差幾乎呈線性增長,但系統(tǒng)輸出的畸變很??;在大加速度的情況下, 對(duì)系統(tǒng)的動(dòng)態(tài)控制準(zhǔn)確性和穩(wěn)定性要求更高, 在頻率升高時(shí)容易出現(xiàn)波形的嚴(yán)重畸變 。 從圖 2和圖 3中不難發(fā)現(xiàn), 在輸入加速度信號(hào)為 0.2g時(shí)系統(tǒng)的動(dòng)態(tài)響應(yīng)最佳,輸出品質(zhì)最好 。
(5)雖然提高輸入的加速度值能夠在一定程度上抵消輸出波形的峰值折減, 但是由于系統(tǒng)極限的限制, 波形各處不是等比例提高的, 這對(duì)于地震波而言往往造成原來峰值較小處的相對(duì)放大, 從而造成波形的畸變 。再者將地震波時(shí)間軸壓縮后, 頻率提高,受到電動(dòng)缸的頻率響應(yīng)范圍和動(dòng)態(tài)性能的限制影響, 更多的頻率成分被平滑忽略, 波形的失真會(huì)更加嚴(yán)重 。
- [焊接技術(shù)] 鋁螺柱焊接對(duì)焊接夾具的設(shè)計(jì)要求 2024-12-28
- [焊接技術(shù)] 螺柱焊接基礎(chǔ)知識(shí) 2022-07-11
- [焊接技術(shù)] 螺柱焊機(jī)發(fā)展史及其焊接工藝 2022-07-11
- [行業(yè)資訊] 百年征程波瀾壯闊 百年初心歷久彌堅(jiān) ——慶黨建100周年主題活動(dòng) 2021-06-30
- [展會(huì)資訊] 【埃森展邀請(qǐng)】六月 相聚上海 共赴焊接盛會(huì)吧! 2021-06-10
- [焊接技術(shù)] 小技巧:焊接時(shí)如何分清焊渣和鐵水? 2021-01-22
- GBT 19867.4-2008 激光焊接工藝規(guī)程.pdf 2019-12-25
- GBT 2652-2008 焊縫及熔敷金屬拉伸試驗(yàn)方法.pdf 2019-12-25
- GBT 16672-1996 焊縫-工作位置-傾角和轉(zhuǎn)角的定義.pdf 2019-12-25
- GBT 16745-1997 金屬覆蓋層產(chǎn)品釬焊性的標(biāo)準(zhǔn)試驗(yàn)方法.pdf 2019-12-25
- GBT 17853-1999 不銹鋼藥芯焊絲.pdf 2019-12-25
- GBT 15169-1994 鋼熔化焊手焊工資格考核方法.pdf 2019-12-25
- GBT 15579.5-2005 弧焊設(shè)備安全要求 第5部分 送絲裝置.pdf 2019-12-25
- GBT 15579.7-2005 弧焊設(shè)備安全要求第7部分:焊炬(槍).pdf 2019-12-23
聯(lián)系人: | 韓玉琦 |
---|---|
電話: | 0755-26013200/26013464 |
傳真: | 0755-26013188 |
Email: | saw@sawchina.cn |
QQ: | 2280915288 |
微信: | 18682260315 |
旺旺: | szhbkj |
地址: | 東莞市鳳崗鎮(zhèn)東深路鳳崗段206號(hào)天安深創(chuàng)谷W2棟誠信大廈21樓 |